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A qualitative investigation is made of the problem of the nonisothermal flow of 
viscoplastic and "power-law" media with allowance for the dissipation of mechani- 
cal energy upon a discontinuous change in the limiting shear stress and coeffi- 
cient of consistency with temperature. 

Let us consider the nonisothermal flow of a rheologically complex fluid in a plane- 
parallel channel with allowance for dissipative heat release and for the temperature depen- 
dence of the rheological characteristics. We assume that the motion of the medium and the 
process of heat exchange are stabilized and that the outer surfaces of the channel walls 
exchange heat with the surrounding medium by Newton's law. A number of reports [i-6] have 
been devoted to the investigation of this problem, but heat exchange in the motion of visco- 
plastic materials has been inadequately studied in the literature, and the case of a sharp 
change in the fluidity of a medium in a relatively small temperature range, which occurs with 
phase transitions, stratified systems, etc., for example, also has not been considered. 

The heat exchange and motion of such fluids in the presence of a dissipative factor have 
not been analyzed. A sharp change in fluidity is possible during the flow of these media in 
channels, In this Case several velocity and temperature distributions can exist in the chan- 
nel. The corresponding boundary problem has a nonunique solution. 

The mathematical formulation of the problem is 

d [ z dry) ' dy ~, f--~y- ~ "rz~('c' T f ) : O ,  O ~ y < h ,  

dyd (~'w ~dTw ), = O, h G y < h q - b ,  

T w =Tfand~w dTw =Xf dTf__ at y = h ,  
dy dy 

(1) 

d__._TT = 0  at y=O; %w dTw''= =(Ta-Tw ~ at y = h q -  b. 
dy dy 

In the flow of viscoplastic media in channels, nonuniformity of the temperature field 
develops owing to dissipative heat release, and under certain conditions a sharp change in 
the fluidity of the medium is possible. Thus, the problem under consideration can have a 
nonunique solution. Let us consider this "ambiguous" situation on two simple examples. 

i. The motion in a plane channel of a viscoplastic medium with the rheological equation 

T--% T ~ T v ,  

1 T > T v ,  

where T v is the temperature at which the plastic properties of the material disappear. 

We introduce the following dimensionless variables and complexes: 
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0 = % ,  ~=-U=T,  6= xf---~v ,~=T,  
BI--=h k= ~f--, I-----3 rl+~((~@ 1-[-)] 

X w ' k w 4 L ~ Bi]] 

Since @(n) is a monotonically decreasing function, there exists a single value n = ~, 
at which O(n,) = O. Different sequences of modes of flow in the channel are possible, de- 
pending on the relationship of the quantities no = To/TW, n,, i, the temperature O c of the 
center of the stream. We can write the value of the ambient temperature @a for each of them. 

If O c > O: 

i) no~ ~, ~-~ 1 (Newtonian flow for ~ ~ ~, and shear viscoplastic flow for ~, < ~ ~ i) 

2) r ~ , ~  r~o~. 1 "(Newtonian q < ~ , ,  quas i -Newton ian  r ~ , ~  rl.~ ~o, and v i s c o p l a s t i c  f low 
no < n~<l) 

- -  - -  2 ~ , ] ,  Oc 12 " Oa . . . .  [ I 3 - - ~ 4  + 4,1o 4~ 4 ] ~ ~l [2 - -  3~0 ~ + a . . . . .  

3) q,~.~ 1~-~ no (Newtonian f low q ~.<q,,  and a q u a s i s o l i d  core  a t  the  wa l l  q ,  < q ~  1) 

" (4 1 I) Oc= ,~, O a = - - - ~ .  ~ ~, , ~----~ 

4) ~, > 1 (a Newtonian fluid flows in the channel) 

Oa=-- 4 
If 0 c < O: 

5) no < 1 (quasisolid ~ ~ no and and quasiplastic ~o ~ 1 zones) 

0 a = ~ [--3 + 4~0 -- B~] 2 ~i (I -- ~0) 2 (2 + B0) + ec. 
12 --9- 

6) no ~ 1 (a quasisolid core fills the channel) 

Oa = Oc. 

Graphs of the function Oa(Oc) are shown in Figs. 1 and 2. The minimum value of 0 a for 
0 c > 0 shifts to the left with an increase in the limiting shear stress no. This is explained 
by the fact that an increase in the size of the quasi-solid zone of the stream q@ leads to 
a decrease in the total dissipation of mechanica9 energy -~Z in the fluid stream. But from 
(i) we have 

~E 
Ta = Tlu=h+b o~ (2) 

Consequently, the smaller CE, the faster [T[y:h+b -- cz/ I reaches the maximum value and the 
temperature curve Oa(Oc) reaches a minumum (O c > 0). 

As seen from Figs. i and 2, when 0 a ~ 0 m and 0 a~ @~ the boundary problem (i) has a 
unique solution, while when @m < @a < @$ it has three solutions, with one of them (when 
~@a/~@c < 0) being unstable�9 alt follows from (2) (STIy=h+b/ST c) < (I/~)(d~E/dT c) when 
~Ta/ST c < O, i.e., with an increase in the temperature of the center of the channel the dis- 
sipative heat release increases more than the heat transfer to the ambient medium and the 
fluid abruptly heats up. Thus, am@de of flow in which 3Ta/3T c < 0 does not occur. 

In actual situations a discontinuous transition M * N (Fig. la) occurs at @a = 0~. Let 
us determine what mode is established after the heat-up. Since. Oaf@c=0 -- @alOc= Bl]~/~z > O, 
viscoplastic flow cannot change into the three-zone mode 2) wlth an increase in 8a. Let us 
study the difference 

8 
AOa (~~ = OaBc=~176 =~/1~-- -~-2[ 1+4~~ -/~1(~3o-3) ] "  

Since AOa(O) > 0, hOa(1) < 0, and d[A@a(_no)]/dno < 0 (0--<~o _<I), in the segment [0, i] the 
function A@a(qo) has a single value R@ = q@ at which A@a(qo ) = 0. The quantity q@ is esti- 
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Fig. 1 Fig. 2 

Fig. i, Dependence @a(@c) for a) no < k < i; b) k < no < /k < i; c) /k < 
no < i; d) no < i/(4k-- 3) < i; e) i/(4k-- 3)< no < 1 (I: zone of Newton- 
ian flow; II: zone of viscoplastic flow; III: quasisolid zone; same in Figs. 
2 and 3). 

Fig. 2. Dependence @a(@c) for a) k < 1 < no; b) i/(4k-- 3) < 1 < no, 

mated as follows: 
] 

~ 0 ~ 1 - - [ 2 ( ~ - / - - 1 ) ]  T,  if />3/4, n~[4(2l'1)]-,, if  l-+oo. 

C o n s e q u e n t l y ,  when an i n c r e a s e  i n  @a v i s c o p l a s t i c  f l o w  becomes p u r e l y  v i s c o u s  w i t h  ~ o ~  
n o ~  1 (A@a < 0 ) ,  o r  changes  i n t o  t h e  t w o - l a y e r  mode o f  f l ow 1) .  When B/4 < l < 1 t he  r e -  
v e r s e  t r a n s i t i o n  P § G o c c u r s  w i t h  a d e c r e a s e  i n  t he  t e m p e r a t u r e  0a f rom a h i g h - t e m p e r a t u r e  
r e g i o n ,  i . e . ,  t h e  f l o w  changes  f rom t w o - l a y e r  1) o r  t h r e e - l a y e r  2) modes and becomes v i s c o -  
p l a s t i c .  

For  l > 1 ( F i g .  l d ,  e and F i g .  2b) t h e  c u r v e  @a(@C) r e a c h e s  a l o c a l  minimum o n l y  i n  t h e  
t w o - l a y e r  mode of  f low 1 ) ,  so t h a t  d i s c o n t i n u o u s  c o o l i n g  t a k e s  p l a c e  o n l y  from one mode of  
f low.  The c r i t i c a l  c o n d i t i o n s  f o r  d i s c o n t i n u o u s  h e a t i n g  and c o o l i n g  do no t  c o i n c i d e  (a  h y s -  
t e r e s i s  e f f e c t ) .  

The r e g i o n  of  n o n u n i q u e  s o l u t i o n s ,  w h i c h  l i e s  b e t w e e n  t h e  c u r v e s  T~(Zw) and Ta(mw)O of  
c r i t i c a l  t e m p e r a t u r e s  f o r  d i s c o n t i n u o u s  t r a n s i t i o n s ,  i s  shown i n  F i g .  3. For  l a r g e r  v a l u e s  
o f  t he  w a l l  s h e a r  s t r e s s e s  t he  c r i t i c a l  v a l u e s  a s y m p t o t i c a l l y  a p p r o a c h  t h e  p a r a b o l a  n~(1 -- 
t 6 ~ / 9 ) / 4 ,  l > 3 /4 .  With an i n c r e a s e  in  l (an i n c r e a s e  i n  the  c h a n n e l  w i d t h ,  improvement  o f  
the heat-exchange conditions, a decrease in the thermal conductivity of the wall) the region 
of nonunique solutions of the problem under study widens. 

The influence of a change in the ambient temperature on the fluid flow rate (the pres- 
sure gradient is constant) is presented in Fig. 4. An increase in the temperature T a to the 

O critical value T~ does not affect the flow rate. At T a = T a discontinuous heating of the 
fluid occurs owing to dissipative heat release ~and the flow rate abruptly grows. 
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Fig. 3. Dependence of critical temperatures of discontin- 
uous transitions on wall shear stress: a) k < i; b) k > i. 
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Fig. 4. Variation of dimensionless fluid 
flow rate q = Q~w/%fTv w~th the ambient 
temperature 8a: a) qo ~ qo; b) q0 < no. 

If qo < ~o then with a further increase in T a the flow rate increases to the value cor- 
responding to the flow of a purely viscous fluid. When qo > no this value of the flow rate 
is reached immediately after the discontinuous heating. Upon a decrease in the temperature 
Ta the flow rate abruptly decreases to the value corresponding to the flow of a viscoplastic 
fluid. The dependence of the flow rate on the ambient temperature also has a hysteresis 
character. 

2. Flow of a fluid obeying the rheological equation of state 

1 l - - n  

te 1 ,,,~ n T-<. 'Tp 

('q T) = i 1 - .  

[ k2 . .~  '+ T > T p  

i n  a p l a n e  c h a n n e l  w i t h  a l l o w a n c e  f o r  t h e  d i s s i p a t i o n  o f  m e c h a n i c a l  e n e r g y .  By a n a l o g y  w i t h  
t h e  p r e c e d i n g  c a s e  we i n t r o d u c e  t h e  d i m e n s i o n l e s s  s h e a r  s t r e s s  n ,  c o r r e s p o n d i n g  t o  t h e  t e m -  
p e r a t u r e  G ( q , )  = 0 a t  w h i c h  a s h a r p  c h a n g e  i n  f l u i d i t y  o c c u r s .  

We obtain the following sequences of zones of flow of a "power-law" fluid with coeffi- 
cients of consistency k= (0~ q ~q,) and kl (q, < q ~ i) if 0 > 0 and 0~ q,~ i; k2 if 
@c > 0 and q,~-i; kl if @c < 0. c 

From the solution of the problem (I) for the medium under consideration we have 

0 a = 

4- ~ i - -  

3 n +  1 

t ~ , - - - - - ~  (' n* + 
+ . 1 2 n  3n 4- l 

2n-F I 

n / i [ ( 1 - - a ) ~ l ,  ~ - - I ]  4-1~ ~ n  
2n "-F 1 3n 4-  l ' 
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From an  a n a l y s i s  o f  t h e  f u n c t i o n  @a(@c) i t  f o l l o w s  t h a t  when 9 a ~ O TM and 0 a ~ O~ t h e  
b o u n d a r y  p r o b l e m  (1)  h a s  a u n i q u e  s o l u t i o n  and when @m < Oa < @~ i t  h a s  t h r e e  s o l u t i o n s ,  
with one of them (3@a/30 c < 0) being unstable. Let us analyze the difference between the 
values of the function @a(Oc) at 0 c = 0 and 0 c = B1o x [n/(2n+l)][n/(3n+l)](n, = i): 

n 131 [ ~  (1 _ li) _t_ l i 2 n - l - l ]  
AOa= Oaln,=l--O_aln,=0-- 2n%- 1 a n +  1 " 

C o n s e q u e n t l y ,  i f  A@ a > 0 t h e n  1 < l < [~ -- ( 2 n + l ) / ( 3 n + l ) ] / ( o  -- 1) and t h e  f l o w  c h a n g e s  
into a two-zone mode after the discontinuous heating. If A9 a < 0 then [o-- (2n+l)/(3n+l)]/ 
(o -- i) < ~ < [(3n+l)/(2n+l) o-- i]/(~ -- i), and after the heating we obtain the flow of a 
"power-law" fluid with a coefficient of consistency k2. 

For anumerical, investigation of the problem (i) we chose an exponential law of varia- 
tion of the plastic viscosity with temperature and a hyperbolic temperature dependence of the 
yield point for a Shvedov--Bingham viscoplastic medium. The calculations confirm the quali- 
tative results obtained in the present report. 

NOTATION 

Tf, Tw, temperatures in fluid stream and at walls, respectively; y, transverse coordi- 
nate; T, shear sterss; Xf, Xw, coefficients of thermal conductivity of fluid and walls, re- 
spectively; ~(T, T), fluidity function; h, half-width of channel; b, wall thickness; rw, wall 
shear stress; to, limiting shear stress of a viscoplastic fluid; a, coefficient of heat ex- 

O change; ~, characteristic viscosity of medium; Ta, ambient temperature; Ta, T~, critical 
values of ambient temperature during heating and cooling, respectively; Tv, Tp, characteris- 
tic temperatures of a change in the rheological properties of the medium for viscoplastic and 
"power-law" fluids, ~espectively; ~E, total dissipation of mechanical energy in fluid stream; 
kl, ka, coefficients of consistency of a power-law fluid; O, ~,~ (@, q), dimensionless tem- 
perature, stress, and fluidity function, respectively; Bi, Biot number; % = %f/%w; 0 = 
(kl/ka) i/n; I = 3/~[i + X(6 + i/Bi)]; 11 = 41/3; B = h2T~/XfTv~; BI = h2T~+i/n/XfTvk~; 6, 
dimensionless wall thickness; Dw, dimensionless wall shear stress; qo, dimensionless yield 
point; ~,, dimensionless stress corresponding to a discontinuous change in the properties of 
the medium; No, solution of the equation A@ a = 0; @a, dimensionless ambient temperature; 0~, 
@~, critical values of dimensionless ambient temperature during heating and cooling; Ow, 
dimensionless temperature of inner surface of channel wall; z, $~ integration variables; AO a = 
9aI~,=o -- Oa]~,=~; 0 dimensionless temperature of midplane of channel 

C' 
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